
www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Simplifying Test System Development with IVI.NET

Kirk Fertitta
Pacific MindWorks

: Kirk Fertitta



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Motivations for IVI.NET

: Present an API more suited to .NET developers

: Simplify source code

• Allow end users to understand instrument behavior by examining driver source

• Allow end users to fix bugs on their own

• Allow end users to add features to drivers on their own

: Richer, more expressive APIs

• More flexibility with API data types

• Clean handling of asynchronous notifications (aka “events”)

: Side-by-side deployment of drivers

• Only one version of an IVI-COM or IVI-C driver can be installed at a time

• IVI.NET allows multiple versions of a driver to be installed



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

IVI-COM and IVI-C Driver Source

: IVI-COM and IVI-C drivers are both quite complicated internally

: Supporting IVI driver features requires a lot of code

• Multi-thread safety

• Simulation

• Range-checking

• State-caching

: “Basic” COM plumbing is complex and not well understood by many

: Multi-model driver support can be complicated

: Driver development tools are required, but can only do so much

• Nimbus Driver Studio and LabWindows both work hard to factor as much code “out 

of the way”

• Tooling around C/C++ is just plain hard

: Users trying to debug through an IVI-COM driver would find themselves 

traversing numerous confusing source code files



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

IVI.NET Driver Source

: Very clean and simple method implementations

• Often can be done with a single-line of code

• No “code-beside” files => simple in-line implementation of each method

: Plumbing “goo” for many features factored into simple attributes

• State caching, range-checking, coercion, locking, parameter validation, and more…

• This makes it very easy for end users to customize driver behavior without writing 

any procedural code

: Simplified I/O by use of standard I/O

• All of the advantages of IVI.NET discussed will be available at the I/O level as well

• VISA.NET API nearing completion by IVI Foundation

• Pre-release available as part of Nimbus Driver Studio distribution

: Any .NET programmer will easily be able to understand and modify an IVI 

driver



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Advanced Tooling for IVI.NET

: Many IVI-COM and IVI-C complaints tied to complex source code

: Tools have even more difficulty dealing with C/C++ source than humans

• Includes files and macros are particularly problematic

• Few really good C++ refactoring exist in any domain

: A prime motivator for .NET itself is the improved ability to create tooling

: Simpler source possible because .NET code can more easily be roundtripped

: Static analysis tools highlight issues at compile time that previously could 

only be detected at runtime

: Browsers can easily interrogate an IVI.NET driver and understand its features

: Declarative attributes can be used where procedural code was previously 

required

• Achieved via “extending” the compiler (aka “code-weaving”)

: Result is that tool-generated code will look just like hand-written code



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Static Analysis Example 1

[DriverMethod]
public void Configure(double bandwidth, double frequency)
{
// ...
io.Printf(“CONFIG %g,%g,%s”, bandwidth, frequency);

}



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Static Analysis Example 2

[DriverMethod]
public void Configure(double bandwidth, double frequency)
{
// ...
io.Printf(“CONFIG %g,%s”, bandwidth, frequency);

}



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Richer Type System

: Both IVI-COM and IVI-C drivers suffer from a limited set of data types

• Integers, floats, Booleans, strings

• Arrays of the above, but extra parameters are required in IVI-C

: IVI-C cannot expose an array of strings

: IVI-C cannot expose structs

• Can be done in IVI-COM, but it’s tedious to implement

IviScope_FetchWaveform(ViSession vi,
ViConstString channel,
ViInt32 waveformSize, // # of elements on input
ViReal64 waveform[], // actual data buffer
ViInt32 *actualPoints, // # of elements on output
ViReal64 *initialX,
ViReal64 *xIncrement);



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Simplifying APIs with .NET TYpes

IviDigitizer_FetchWaveformReal64(ViSession Vi,
ViConstString ChannelName,
ViInt64 WaveformArraySize,
ViReal64 WaveformArray[],
ViInt64* ActualPoints,
ViInt64* FirstValidPoint,
ViReal64* InitialXOffset,
ViReal64* InitialXTimeSeconds,
ViReal64* InitialXTimeFraction,
ViReal64* XIncrement);

IVI-C signature

Channels[].Measurement.FetchWaveform(IWaveform<Double> waveform)

IVI.NET signature



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

How to deal with Events?

: IVI-COM and IVI-C drivers almost never expose events

• Exposing something as commonly needed as an SRQ is tortuous

• Requires special knowledge/programming by the driver developer

• Requires special knowledge/programming by the client programmer

: .NET supplies a standard mechanism for exposing events

• No special programming required by the driver developer or client programmer

• Trivial code to subscribe/unsubscribe

• Trivial code for driver developers to customize subscribe/unsubscribe semantics

: Warnings can now be dealt with properly in IVI drivers by the use of events



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Shared IVI.NET Data Types

: IVI Foundation felt it would be useful to offer commonly used data types as 

part of the IVI.NET Shared Components

• Increase consistency amongst IVI.NET drivers

• Facilitate data interchange between drivers

: Standardized IWaveform and ISpectrum interfaces

• Digitizers and scopes and RF spectrum analyzers all read waveforms

• Function generators and RF signal generators source waveforms

• Without a common definition of a “waveform”, client applications would need to 

write the tedious code to translate between each class’s notion of a waveform

: Time-based parameters can use PrecisionDateTime and PrecisionTimeSpan

• No confusion about ms vs sec, absolute vs relative time, UTC time, etc

• Precision adequate for IEEE 1588 devices

: Common trigger source data type

• Useful in “stitching” together devices in triggered source-measure operations



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Error Handling in IVI.NET

: IVI-C drivers rely solely on return codes

• Errors can easily be ignored by the client application

• After getting the error code, a second function call is required to get the message

• Special handling of warning codes required

: IVI-COM error code handling depends upon the client environment

• Return codes in raw C++

• Special exception classes in C++ 

• COMException class in .NET interop scenarios

• .NET clients can’t see warnings at all from IVI-COM drivers

: IVI.NET drivers always use exceptions

• User can always see the full context of the error

• Error content less dependent upon specific driver implementation

• Natural mechanism



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Simplified Usage Syntax

: Simplified access to very commonly used features

• Enums

• Repeated capabilities (e.g. “channels”)

digitizer.Arm.Sources.get_Item("LAN3").Detection = 
IviLxiSyncArmSourceDectionEnum.IviLxiSyncArmSourceDetectionHigh;

C# client using IVI-COM driver through interop

C# client using IVI.NET driver

digitizer.Arm.Sources["LAN3“].Detection = ArmSourceDetection.High;



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Performance of IVI.NET

: Fewer memory leaks

: Reference counting has a cost

• Reference count field per-object

• Increment and decrement called much more frequently than one might think

• Reference count field must be thread-safe 

– Even more per-object overhead

– Frequently lock/unlock operations

: Conventional memory-managed systems (such as C-runtime library) produce 

highly fragmented memory

• Allocation of objects can be expensive

• Objects spread out in memory => poor locality of reference

: .NET memory allocation produces very good locality of reference

• Object allocation extremely fast

• Objects allocated close together in time live close together in memory

• Fewer cache misses and better virtual paging performance



www. pacificmindworks.com                                                                                :   Pacific MindWorks, Inc. 2012. All Rights Reserved

Dynamic Memory Allocation in .NET

[1] Garbage Collection: Algorithms for Automatic Dynamic Memory Management, by Richard Jones and 

Rafael Lins (John Wiley & Sons, 1996)

var c1 = new Car();
var c2 = new Car();
var c3 = new Car();

C1 C2 C3 Free Space

Managed Heap

Start of free space


