
IVI Web Forum Question and Answer

Answered by Kirk Fertitta, Pacific Mindworks
for the IVI Web Forum

Note: Offering an IVI driver is a requirement for all LXI-conformant instruments. The IVI Web
Forum is hosted by the IVI Foundation. You can sign up at www.ivifoundation.org.

Question:

How to find and select installed instruments.
How, using the IVI interfaces do I find and create a list at runtime of the installed instrument
drivers for a particular instrument class. For instance, I normally create my own generic drivers
for my program and then I present to the user a list of all the instruments supported for each class
and he selects his particular model for use in that test. There are different classes for Scopes,
DMMs, Anlysers etc. How do I find out at runtime what IVI drivers are loaded for what models
of what instruments in each class and list then for selection to the end user. I would then want to
tell the class driver which model driver to use and then communicate with it through the high
level class driver. Can I do this with IVI or do I need to continue with my own driver system?

Answer:

Thanks for your question. This kind of thing is actually one of the benefits of using IVI -- that is,
there is a single place you can look for this information and dynamically discover all sorts of
things about the installed drivers. Each driver is required by the specifications to register the
information you mention (and a lot more) in the IVI Configuration Store (a.k.a., "Config Store").
When you install the IVI Shared Components, these include APIs for accessing the Config Store
at runtime. There is a native COM API, a .NET API, and an ANSI-C API -- all are functionally
equivalent but are intended to provide convenience based upon your desired development
environment.

Here is a very simple code sample for discovering the information you mention. As you can see,
it's only a few lines of code. This sample is using C#. Just create a C# console application, and
then you must add a reference to the Config Store -- within Visual Studio, choose "Add
Reference", select the "COM" tab within the Add Reference Dialog, and then select "Ivi
Configuration Server 1.6 Type Library". With that in place, the following code should work:

var store = newIviConfigStore();

var location = store.MasterLocation;

store.Deserialize(location);

foreach (IIviSoftwareModule sm in store.SoftwareModules)

{

var classes = String.Join(",", sm.PublishedAPIs.Cast<IIviPublishedAPI>()
.Select(a => a.Name)
.ToList());

Console.WriteLine("Driver: Name = {0}, Models = {1}, Classs = {2}",
sm.Name, sm.SupportedInstrumentModels, classes);

}

